Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a proof-of-concept simulation-based inference on Ωmandσ8from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) LOWZ Northern Galactic Cap (NGC) catalog using neural networks and domain generalization techniques without the need of summary statistics. Using rapid light-cone simulations L-picola, mock galaxy catalogs are produced that fully incorporate the observational effects. The collection of galaxies is fed as input to a point cloud-based network,Minkowski-PointNet. We also add relatively more accurate Gadgetmocks to obtain robust and generalizable neural networks. By explicitly learning the representations that reduce the discrepancies between the two different data sets via the semantic alignment loss term, we show that the latent space configuration aligns into a single plane in which the two cosmological parameters form clear axes. Consequently, during inference, the SDSS BOSS LOWZ NGC catalog maps onto the plane, demonstrating effective generalization and improving prediction accuracy compared to non-generalized models. Results from the ensemble of 25 independently trained machines find Ωm= 0.339 ± 0.056 andσ8= 0.801 ± 0.061, inferred only from the distribution of galaxies in the light-cone slices without relying on any indirect summary statistics. A single machine that best adapts to the Gadgetmocks yields a tighter prediction of Ωm= 0.282 ± 0.014 andσ8= 0.786 ± 0.036. We emphasize that adaptation across multiple domains can enhance the robustness of the neural networks in observational data.more » « less
- 
            Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
